
Wave Theory II — Numerical Simulation of Waves —

(2) Representation of Wave Function by Using Green Function

— (I) Green’s Theorem and Free Space Green Function

Jun-ichi Takada (takada@ide.titech.ac.jp))

This lecture and the following lecture treat the Green functions to prepare for the representation of
wave functions as the preparation of numerical simulations.

1 Meaning of Green Function — What to Be Concluded

Green function (or Green’s function) is the wave function generated by the unit point source. As far
as the law of superposition is satisfied, i.e. the system is linear, the wave function for the arbitrarily
distributed source is expressed as the integration of Green function weighted by the source distribution.

Assuming the position vectors of source and observation points are r′ and r respectively, the Green
function of scalar Helmholtz equation G(r, r′) is defined as

∇2G(r, r′) + k2G(r, r′) = −δ(r − r′). (1)

In case, the solution φ(r) of the general Helmholtz equation

∇2φ(r) + k2φ(r) = −ρ(r) (2)

is expressed by using Green function as

φ(r) =
∫

V

G(r, r′)ρ(r′)dV ′ +
∮

∂V

{G(r, r′)∇′φ(r′) −∇′G(r, r′)φ(r′)} · dS′, (3)

where V is the volume under consideration, ∂V is the surface of V , and dS is the outward normal
vector of ∂V . The volume integral in the right-hand side Eq. (3) corresponds to the superposition of
the contribution from the source. On the other hand, the surface integral corresponds the superposition
of the contribution from the equivalent sources on the boundary, which are equal to the wave function
and its normal derivative. This term expresses the effect from outside the boundary, and is the formal
expression of Huygens principle. Equation (3) is known as Kirchoff-Huygens principle. It is concluded
from Eq. (3) that the solution of the Helmholtz equation is uniquely solved if (i) the source distribution
and (ii) the wave functions on the boundary are known.

In the following sections, the derivation and the meaning of Eq. (3) are described. Then, the expression
of G(r, r′) in the free space is presented.

2 Green’s Theorem

In an arbitrary volume V , two different scalar functions u, v satisfy the following relation.
∫

V

(u∇2v − v∇2u)dV =
∮

∂V

(u∇v − v∇u) · dS, (4)

where dS is the outward normal vector of ∂V . This relation is known as Green’s theorem.

[Proof]

Gauss’ theorem ∫
V

∇ ·AdV =
∮

∂V

A · dS (5)
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and the vector identity

∇ · fA =
∂

∂x
(fAx) +

∂

∂y
(fAy) +

∂

∂z
(fAz)

=
(

∂f

∂x
Ax + f

∂Ax

∂x

)
+

(
∂f

∂y
Ay + f

∂Ay

∂y

)
+

(
∂f

∂z
Az + f

∂Az

∂z

)

= ∇f · A + f∇ ·A (6)

are used.
By substituting A = u∇v − v∇u into Eq. (5), and using vector identity (6),

∇ · A = ∇u · ∇v + u∇2v

−∇v · ∇u − v∇2u (7)

is proved.

(end of proof)

3 Integral Representation of Wave Function by Using Green

Function — Kirchoff-Huygens Principle

For an inhomogeneous Helmholtz equation

∇2φ(r) + k2φ(r) = −ρ(r), (8)

Green function G(r, r′) is given as

∇2G(r, r′) + k2G(r, r′) = −δ(r − r′), (9)

where r′ and r are the position vectors of the source and the observer. Here, the Green function G(r, r′)
is assumed to satisfy the following boundary conditions1 on S = ∂V .

A(r)n̂ · ∇G(r, r′) + B(r)G(r, r′) = 0. (10)

The solution φ(r) of the Helmholtz equation (8) is expressed by using Green function as

φ(r) =
∫

V

G(r, r′)ρ(r′)dV ′ +
∮

∂V

{G(r, r′)∇′φ(r′) −∇′G(r, r′)φ(r′)} · dS′. (11)

Equation (11) is called Kirchoff-Huygens Principle.

[Proof]

The reciprocity of Green function is proved first. u = G(r, r′1) and v = G(r, r′2) are
substituted into Green’s theorem (4). Then, the integrand of the left-hand side is written as

u∇2v − v∇2u = G(r, r′1)∇2G(r, r′2) − G(r, r′2)∇2G(r, r′1)
= G(r, r′1)

{−k2G(r, r′2) − δ(r − r′2)
}

−G(r, r′2)
{−k2G(r, r′1) − δ(r − r′1)

}
= −G(r, r′1)δ(r − r′2) + G(r, r′2)δ(r − r′1).

Therefore, the Green’s theorem (4) is rewritten as

(left-hand side) = −G(r′2, r′1) + G(r′1, r′2),

(right-hand side) =
∮

∂V

{G(r, r′1)∇G(r, r′2) − G(r, r′2)∇G(r, r′1)} · dS,

= 0 (both satisfy Eq. (10).)
1A(r) = 0 is called Dirichlet condition, whereas B(r) = 0 is called Neumann condition. For acoustic waves, B(r) = 0

corresponds v = 0, i.e. hard surface, A(r) = 0 corresponds p = 0, i.e. soft surface, and
A(r)
B(r)

= const. corresponds to

impedance surface.
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By rewriting the variables as r′1 = r, r′2 = r′,

G(r, r′) = G(r′, r) (12)

is obtained. This characteristic is called reciprocity of the Green function.
Next, u = φ(r) and v = G(r, r′) are substituted into Green’s theorem (4). Then, the

integrand of the left-hand side is written as

u∇2v − v∇2u = φ(r)∇2G(r, r′) − G(r, r′)∇2φ(r)
= φ(r)

{−k2G(r, r′) − δ(r − r′)
} − G(r, r′)

{−k2φ(r) − ρ(r)
}

= −φ(r)δ(r − r′) + ρ(r)G(r, r′).

Therefore, the Green’s theorem (4) is rewritten as

−φ(r′) +
∫

V

G(r, r′)ρ(r)dV =
∮

∂V

{φ(r)∇G(r, r′) − G(r, r′)∇φ(r)} · dS.

By using the reciprocity of the Green function (12) and interchanging r and r′, Eq. (11)

φ(r) =
∫

V

G(r, r′)ρ(r′)dV ′ +
∮

∂V

{G(r, r′)∇′φ(r′) −∇′G(r, r′)φ(r′)} · dS′

is obtained.

(end of proof)

If the Helmholtz equation (8) satisfies the same boundary condition as the Green function (10), the
surface integral term of Eq. (11) becomes identically zero. Once the Green function that satisfies the
given boundary condition, the solution of the Helmholtz equation is expressed as the superposition of this
Green function weighted by the source distribution.

If the Helmholtz equation (8) does not satisfy the same boundary condition as the Green function (10),
the surface integral term of Eq. (11) is nonzero in order to express the effect from outside. The first term
of the integrand of this surface integral is in the same form as the source contribution in the volume
integral. Therefore,

ρS(r′) ≡ ∇′φ(r′) · n̂′ (13)

is called the equivalent surface (monopole) source. In the second term of the integrand, the normal
derivative of the Green function is regarded as the Green function with respect to the dipole source.
Therefore,

µ̂S(r′) ≡ −n̂′φ(r′) (14)

is called the equivalent surface dipole source. These equivalent sources are assumed to exist on the
boundary.

When two point sources are located at r′ and infinitesimally separated as much as ∆n′ with equal
magnitude and alternating sign (i.e. dipole), the wave function D(r, r′) is expressed as

∇2D(r, r′) + k2D(r, r′) = lim
∆n′→0

−δ(r − (r′ + ∆n′)) + δ(r − r′)
∆n′ . (15)

The solution is expressed by using Green function as

D(r, r′) = lim
∆n′→0

G(r, (r′ + ∆n′)) − G(r, r′)
∆n′

= ∇′G(r, r′) · n̂′. (16)

Therefore, ∇′G(r, r′) is regarded as the vector Green function with respect to the dipole source.

4 Free Space Green Function

The Green function in the free space, i.e. when the boundary exists infinitely far, can be derived in the
following manners.
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4.1 3D Green Function

When the source is assumed to be at the origin of the coordinates, the Green function G(r) is expressed
from Eq. (9) as

∇2G(r) + k2G(r) = −δ(r). (17)

Since the free space is assumed, G(r, r′) is only the function of r = |r| due to the symmetry. By using
the Laplacian in the spherical coordinates

∇2φ =
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1
r2 sin 2θ

∂2φ

∂ϕ2
, (18)

Eq. (17) is rewritten as
1
r2

d
dr

(
r2 dG(r)

dr

)
+ k2G(r) = −δ(r). (19)

Since the right-hand side of Eq. (19) is zero except for the origin, both sides are multiplied by r and

d2

dr2
(rG(r)) + k2(rG(r)) = 0 (20)

is obtained. Equation (20) is easily solved to obtain

G(r) = M
e−jkr

r
, (21)

where M is an arbitrary constant, and only the traveling wave toward +r is assumed since the source is
located at the origin.

The arbitrary constant M is determined by substituting Eq. (21) into Eq. (17), and then integrating
Eq. (17) within the small sphere including the origin, as (see Appendix for details)

∫
V

∇2GdV =
∮

∂V

∇G · dS
= 4πr2r̂ · ∇G

= −4πMr2

(
e−jkr

r2
+ jk

e−jkr

r

)
∫

V

k2GdV = 4πk2M

{
− 1

jk
re−jkr +

1
k2

(
e−jkr − 1

)}
∫

V

(−δ)dV = −1.

By taking the limit of r → 0,

M =
1
4π

(22)

is obtained.
When the source is located at the arbitrary position r′, let r = |r−r′| and the Green function G(r, r′)

is expressed as

G3(r, r′) =
e−jk|r−r′|

4π|r − r′| . (23)

4.2 2D Green Function

A 2D problem which is uniform along z direction. When the source is assumed to be at the origin of the
coordinates, the Green function G(ρ) is expressed from Eq. (9) as

∇2G(ρ) + k2G(ρ) = −δ(ρ). (24)

Since the free space is assumed, G(ρ, ρ′) is only the function of ρ = |ρ| due to the symmetry. By using
the Laplacian in the cylindrical coordinates

∇2φ =
1
ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1
ρ2

∂2φ

∂ϕ2
+

∂2φ

∂z2
(25)
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Figure 1: Bessel and Neumann functions.

Eq. (24) is rewritten as
1
ρ

d
dρ

(
ρ
dG(ρ)

dρ

)
+ k2G(ρ) = −δ(ρ). (26)

Since the right-hand side of Eq. (26) is zero except for the origin, Eq. (26) is rewritten as

1
ρ

d
dρ

(
ρ
dG(ρ)

dρ

)
+ k2G(ρ) = 0. (27)

This is known as the Bessel’s differential equation. The two independent solutions are the Bessel function
J0(kρ) and the Neumann function N0(kρ), which are shown in Fig. 1. Alternatively, linear combinations
of these two functions, i.e. Hankel functions of first kind H

(1)
0 (kρ) = J0(kρ)+ jN0(kρ) and of second kind

H
(2)
0 (kρ) = J0(kρ) − jN0(kρ) may be used as well.

Only the traveling wave toward +ρ is assumed since the source is located at the origin in the same
manner as 3D case. Therefore, the solution is given as the Hankel function of second kind as

G(ρ) = MH
(2)
0 (kρ). (28)

The arbitrary constant M is determined by substituting Eq. (28) into Eq. (24), and then integrating
Eq. (24) within the small circle including the origin, as

∮
∂S

∇G · dl +
∫

S

k2GdS =
∫

S

(−δ)dS. (29)

By taking the limit of ρ → 0,

M =
1
4j

(30)

is obtained.
When the source is located at the arbitrary position ρ′, let ρ = |ρ − ρ′| and the Green function

G(ρ, ρ′) is expressed as

G(ρ, ρ′) =
1
4j

H
(2)
0 (k|ρ − ρ′|). (31)

4.3 1D Green Function

A 1D problem which is uniform along y and z directions. In the same manner as 3D and 2D cases, the
1D free space Green function is given as

G(x, x′) =
1

2jk
e−jk|x−x′|. (32)

A Supplements for the Derivation of Free Space Green Function

Why
∫

V
∇2GdV is modified by using Gauss’ theorem to avoid the singularity, while

∫
V

k2GdV can be
integrated including the singularity (i.e. the source point)? This is described in the following manner,
although it is not rigorous.
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The regularity means the possibility of the differentiation, and the irregularity increases by the differ-
entiation. Therefore, ∇2G shall be more carefully integrated by introducing Gauss’ theorem. Contrary,
the integral of k2G is finite.

These things are clarified more by considering the limiting operation which is described in this handout.
That is, the variation of e−jkr near the origin is very small compared with that of 1

r . Therefore, the
approximation e−jkr � 1 is valid. In case, the integrals are written as

∫
V

∇2GdV =
∮

∂V

∇G · dS

�
∮

∂V

∇M

r
· dS

= 4πr2(−M

r2
),

= −4πM∫
V

k2GdV �
∫

V

k2 M

r
dV

=
∫ r

0

k2 M

r
4πr2dr

= 2πMk2r2,

in 3D case. It is noted that the singularity in the latter integrand has been disappeared after the
integration.

Report

Tokyo Tech students are requested to submit by either of the following ways:

1. by passing the lecturer before the lecture, or

2. or via the mailing post of O-okayama Minami 3 bldg. 1st floor.

Do not forget to fill out the student ID, your department and lab names, as well as your name. KMITL
students shall follow the instruction of Dr. Chuwong.

The handouts as well as the copies of the slides can be downloaded from the web.

http://mobile.ss.titech.ac.jp/~takada/waves/

Exercises

1. Derive 1D free space Green function in cases of x > x′ and x < x′, separately.

2. Find the asymptotic formulae of the Bessel and the Neumann functions when the variable is ap-
proaching to infinity. Then, describe why the outward traveling wave is described by the Hankel
function of second kind.

3. Point out the corrections of handout, if any.
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